HIV boffins look to slow-progressors for antibody recipe



Home Page
The latest articles, features and news.



Read About...

Adolescence
AIDS/HIV Treatments
Andropause
Assisted Reproduction
Circumcision
Dating
Dicks & History
Enlargement
Fertility
Firefly Talks Dicks
Gay and Bi
Gender
Getting It Up
Male Peculiarities
Paternity
Pecker Problems
Penis Size
Prostate Cancer
Relationships
STDs


Search Articles




Discussion Forums







23 March 2009
HIV boffins look to slow-progressors for antibody recipe
by George Atkinson

For several decades, researchers have tried and failed to develop an HIV vaccine, primarily by focusing on a small number of engineered "super antibodies" to fend off the virus before it takes hold. But to date, these magic bullet antibodies have proved impossible to produce in people.

Now, scientists from Rockefeller University have gone back to square-one in their efforts to create a HIV vaccine and this time they're taking their cue from nature by examining the diverse cocktail of natural antibodies that slow-progressing HIV patients carry. According to the researchers, these pack-hunting natural antibodies hunt down the virus just as well as their super-antibody cousins fighting solo.

Slow-progressors represent the roughly 10 to 20 percent of HIV patients who are able to control the virus and are very slow to progress to disease. Their immune systems' memory B cells produce high levels of antivirus antibodies, but until now, researchers have known little about the antibodies or how effective they are.

Rockefeller's Michel C. Nussenzweig says that an effective HIV vaccine may come from a shotgun approach using these natural antibodies rather than an engineered magic bullet. "We wanted to try something different, so we tried to reproduce what's in the patient. And what's in the patient is many different antibodies that individually have limited neutralizing abilities but together are quite powerful," says Nussenzweig. "This should make people think about what an effective vaccine should look like."

HIV strains mutate rapidly, making them especially wily adversaries of the immune system. But one element is shared almost universally among the diverging strains � a protein on the envelope of the virus called gp140 that HIV needs to infect immune cells. Prior research has shown that four randomly engineered antibodies that block the activity of that protein prevent the virus from infecting immune cells in culture, but all attempts to coax the human body into producing those four have failed.

In the course of their research, the scientists isolated 433 antibodies from slow-progressor blood serum that specifically targeted the envelope protein - the chink in HIV's protean armor. They cloned the antibodies and produced them in bulk, mapped which part of the envelope protein each targeted, and gauged how effective each was in neutralizing the virus. In the process, he identified a new structure within the envelope protein - called the gp120 core - that had never been recognized as a potential target for antibodies. "It's the first time that anyone has defined what is really happening in the B cell response in these patients," explained co-researcher Johannes Scheid.

Nussenzweig noted that each antibody alone has limited ability to fight the virus. "Individually, they're not as strong as the Famous Four," says Nussenzweig, referring to the high-profile super antibodies on which several vaccine attempts have been based. But in high concentrations, a combination of the sets of antibodies cloned from the individual patients seemed to act as "teams" to knock down the virus in cell culture as well as any single antibody studied to date. These natural antibodies were also able to recognize a range of HIV strains, indicating that their diversity may be an advantage over a single super antibody that focuses on only one part of the virus, which can mutate.

Related:
HIV Attenuated By Non-Progressors
Natural Immunity Comes Under Spotlight In HIV Fight
Natural Gene Mutation Protects HIV-Infected Patients

Source: Rockefeller University




Home Page    Contact Us    Privacy


Your use of this website indicates your agreement to our terms and conditions of use.
Copyright 2025 altPenis.com and its licensors. All rights reserved.